基本介绍
英文别名:activated carbon 活性炭是传统而现代的人造材料,又称碳分子筛,化学式:C。CAS:64365-11-3 EINECS: 264-864-4。自从问世一百年来,活性炭与蜂窝状活性炭应用领域日益扩展,应用数量不断递增。活性炭(4张)
主要用途
1、脱色和过滤,使带色液体脱色。 2、吸收各种气体与蒸气。 3、色谱分析用。 4、测甲醇、锡和硅的还原剂。 5、粒状物可用作催化剂的载体。活性炭价格
活性炭价格根据生产原料、产品性能、应用领域决定,以下价格仅供参考。 针剂活性炭价格在13500元/吨;糖用粉状活性炭一等品12000元/吨;脱色用粉状活性炭价格在11000元/吨,自来水公司用粉状活性炭价格在7500元/吨。种类划分
由于原料来源、制造方法、外观形状和应用场合不同,环保活性炭的种类很多,到目前为止尚无精确的统计材料,大约有上千个品种。![活性炭包装 活性炭包装](http://img.vvchem.com/img/baike/2013/7/28/1374947691903849.jpg)
活性炭包装
材质分类
种 类 | 原 料 |
木质活性炭 | 以木屑、木炭等制成的活性炭 |
果壳活性炭 | 以椰子壳、核桃壳、杏核壳等制成的活性炭 |
煤质活性炭 | 以褐煤、泥煤、烟煤、无烟煤等制成的活性炭 |
石油类活性炭 | 例如以沥青等为原料制成的沥青基球状活性炭 |
再生炭 | 以用过的废炭为原料,进行再活化处理的再生活性炭[1] |
椰壳活性炭
![椰壳活性炭 椰壳活性炭](http://img.vvchem.com/img/baike/2013/7/28/1374947692451094.jpg)
椰壳活性炭
果壳活性炭
简介 果壳活性炭主要以果壳和木屑为原料,经炭化、活化、精制加工而成。具有比表面积大、强度高、粒度均匀、孔隙节构发达、吸附性能强等特点。并能有效吸附水中的游离氯、酚、硫、油、胶质、农药残留物和其他有机污染以及有机溶剂的回收等。适用于制药、石油化工、制糖、饮料、酒类净化行业,对有机物溶剂的脱色、精制、提纯和污水处理等方面。 用途 果壳活性炭被广泛应用于饮用水、工业用水和废水的深度净化生活、工业水质净化及气相吸附,如电厂、石化、炼油厂、食品饮料、制糖制酒、医药、电子、养鱼、海运等行业水质净化处理,能有效吸附水中的游离氯、酚、硫和其它有机污染物,特别是致突变物(THM)的前驱物质,达到净化除杂去异味。还可用于工业尾气净化、气体脱硫、石油催化重整,气体分离、变压吸附、空气干燥、食品保鲜、防毒面具、解媒载体,工业溶剂过滤、脱色、提纯等。各种气体的分离、提纯、净化;有机溶剂回收;制糖、味精、医药、酒类、饮料的脱色、除臭、精制;贵重金属提炼;化学工业中的催化剂及催化剂载体。产品更具脱色、提纯、除杂、除臭、去异味、载体、净化、回收等功能。 技术参数 真假椰壳活性炭识别方法![相关产品 相关产品](http://img.vvchem.com/img/baike/2013/7/28/1374947692966251.jpg)
相关产品
木质活性炭
![木质活性炭 木质活性炭](http://img.vvchem.com/img/baike/2013/7/28/1374947693639323.jpg)
木质活性炭
木质柱状活性炭
特 点:采用优质木屑、椰壳等为原料,经粉碎、混合、挤压、成型、干燥、炭化、活化而制成。 独创性:采用非粘结成型活性炭专有技术。改变传统用煤焦油、淀粉等传统粘结剂成型的办法。不含粘结剂成份,完全靠炭分子之间的亲和力和原料本身的特殊性质。科学配方,制作而成,有效避免炭孔堵塞,充分发挥丰富发达炭孔的吸附功能。 先进性:由于采用优质木屑、椰壳为原料,制成的柱状活性炭比传统的煤质柱状炭灰份低、杂质少、气相吸附值、CTC占绝对优势。产品孔径分布合理,达到最大吸附与脱附,从而大大提高产品的使用寿命(平均2-3年),是普通煤质炭的1.4倍。有柱状和球形颗粒等规格。 适用性:①、气相吸附 ②、有机溶剂回收(苯系气体甲苯、二甲苯、醋酸纤维行业中的丙酮回收) ③、杂质和有害气体去除,废气回收 ④、炼油厂、加油站、油库过量汽油回收。![木质柱状活性炭 木质柱状活性炭](http://img.vvchem.com/img/baike/2013/7/28/1374947694287977.jpg)
木质柱状活性炭
CTC 吸附值 | % | 100-140% |
苯吸附Benzene adsorption | % | 45-65% |
碘吸附值Iodine adsorption | Mg/g | 1100-1300 |
比表面积 Surface area | m2/g | 1400~2400 |
表观密度 Bulk density | g/ml | 0.33~0.38 |
着火点Ignition temperature | ℃ | 400~450 |
强 度Hardness | % | 95-99.9% |
灰 分Ash | % | 3-6 |
水 分Moisture content | % | 5 |
粒 度 Particle size | mesh | 2,3,4mm |
![煤质柱状活性炭 煤质柱状活性炭](http://img.vvchem.com/img/baike/2013/7/28/1374947694827156.jpg)
煤质柱状活性炭
煤质柱状活性炭
简介 煤质柱状活性炭选用优质无烟煤为原料,采用先进工艺精制加工而成,外观呈黑色圆柱状颗粒;具有合理的孔隙结构,良好的吸附性能,机械强度高,易反复再生,造价低等特点;用于有毒气体的净化,废气处理,工业和生活用水的净化处理,溶剂回收等方面。煤质柱状活性炭物理、化学性能分析(GB/T 7701.7-1997)分析项目 | 测试数据 | 分析项目 | 测试数据 |
碘值 | ≥850mg/g | 机械强度 | ≥90% |
比表面积 | 500-900m/g | 水分 | ≤10% |
充填密度 | 0.45-0.55g/cm | PH值 | 按要求生产 |
苯吸附 | ≥400mg/g | 亚甲蓝值 | ≥8ml/g |
![煤质颗粒活性炭 煤质颗粒活性炭](http://img.vvchem.com/img/baike/2013/7/28/1374947695352339.jpg)
煤质颗粒活性炭
活性炭应用的安全问题
通常都认为应用活性炭没有安全问题,但实际没有绝对的安全,对活性炭应用中的安全不能掉以轻心,对活性炭的性质和不安全的可能性要有所认识。 A. 关于着火 1) 活性炭不列入危险品类,但是可燃的。着火后不会发生有焰燃烧,只是阴燃。 2)活性炭不会自燃,在空气中可能会着火,与汽油、柴油等混合,可引起燃烧。 3)活性炭燃烧时如果通风不足,会生成有毒的一氧化碳。 B、关于贮存 1) 活性炭必须存放在尽可能防火的建筑内。 2)活性炭不可与氧化剂混放 3)贮放处禁止明火,火花和吸烟煤质颗粒活性炭
煤质颗粒活性炭选用优质无烟煤为原料,采用先进的工艺精制而成,外观为黑色不定型颗粒。具有空隙结构发达,比表面积大,吸附能力强,机械强度高,床层阻力小,化学稳定性能好,易再生,经久耐用等优点。稻壳活性炭
水稻脱粒时产生的稻壳往往被当做废弃物扔掉,日本研究人员日前报告说,他们开发出了利用稻壳制造高性能活性炭的技术。 日本长冈技术科学大学的斋藤秀俊教授在论文中指出,如果单纯将稻壳加热后制成炭,稻壳内残留的二氧化硅会阻碍其作为活性炭发挥作用。但是将上述“稻壳炭”与氢氧化钾和氢氧化钠混合在一起,然后进行热处理,就可以成功去除二氧化硅。据测算,与普通活性炭相比,这种稻壳活性炭及其孔隙的表面积相当于前者的2.5倍。活性炭纤维
![活性炭纤维 活性炭纤维](http://img.vvchem.com/img/baike/2013/7/28/1374947697391631.jpg)
活性炭纤维
应用历史
历史记载 活性炭应用的历史,记载如下: ⑴公元前1550年,埃及有作为医用的记载; ⑵公元前460~359年,希腊医生Hippocrate用以治羊癫疯; ⑶ 1518~1593年,中国李时珍的本草纲目中提及用于治病; ⑷ 1993年有外用于溃疡; ⑸ 1794年,英国有家糖厂用于加速脱色。上述例证应用的都是木炭,不是活性炭。 活性炭作为人造材料,是在1900年和1901年才发明的,发明者Raphael von Ostrejko,取得英国专利B.P.14224(1900);英国专利B.P.18040(1900)德国专利Ger.P.136792(1901)。 他发明将金属氯化物炭化植物源原料或用二氧化碳或水蒸气与炭化材料反应制造活性炭。1911年在维也纳附近的工厂首次用于工业生产,当时产品是粉状活性炭,商品名使Epomit;同年在荷兰有Norit上市;1912年在捷克斯洛伐克有Carboraffin出售。(Ger.Pat.290656)。 历史阶段 回顾百年来世界活性炭应用的历史,不妨粗略划分为三个阶段: ⑴第一阶段,从20世纪初到约20世纪20年代为萌芽阶段: ⑵第二阶段,从约20世纪20年代中期为成长阶段; ⑶第三阶段,从20世纪中期到20世纪末期为发展阶段,发展成为环保大应用阶段。 这三个阶段可用活性炭应用历程中两件历史性大事。作为划分的界限。 历史事件 第一件大事是活性炭防毒面具,在20世纪20年代在第一次世界大战中的应用。可以次作为划分活性炭应用历史的第一阶段和第二阶段的界限。![活性炭 活性炭](http://img.vvchem.com/img/baike/2013/7/28/1374947698259934.jpg)
活性炭
技术指标
颗粒活性炭 | ? | 柱粒活性炭 | ? |
碘值 | ≥950(mg/g) | 碘值 | ≥850(mg/g) |
苯吸附 | ≥450(mg/g) | 比表面积 | 500-900m²/g |
比表面积 | 900-1100m²/g | 充填密度 | 0.45-0.55g/cm³ |
充填密度 | 0.45-0.55g/cm³ | 强度 | ≥90% |
强度 | ≥90% | 水分 | ≤10% |
水分 | ≤10% | ? | ? |
主要特性
吸附特性 活性炭是一种很细小的炭粒 有很大的表面积,而且炭粒中还有更细小的孔――毛细管。这种毛细管具有很强的吸附能力,由于炭粒的表面积很大,所以能与气体(杂质)充分接触。当这些气体(杂质)碰到毛细管被吸附,起净化作用。活性炭的表面积研究是非常重要的,活性炭的比表面积检测数据只有采用BET方法检测出来的结果才是真实可靠的,国内目前有很多仪器只能做直接对比法的检测,现在国内也被淘汰了。目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看中国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。F-Sorb 2400比表面积测试仪是真正能够实现BET法检测功能的仪器(兼备直接对比法),更重要的F-Sorb 2400比表面积测试仪是迄今为止国内唯一完全自动化智能化的比表面积检测设备,其测试结果与国际一致性很高,稳定性也很好,同时减少人为误差,提高测试结果精确性。 活性炭对各气体的吸附能力(单位:ml/cm3): H2、 O2、N2、Cl2、CO2 4.5 、35、11、494、97 催化特性 活性炭在许多吸附过程中伴有催化反应,表现出催化剂的活性。例如活性炭吸附二氧化硫经催化氧化变成三氧化硫。 由于活性炭有特异的表面含氧化合物或络合物的存在,对多种反应具有催化剂的活性,例如使氯气和一氧化碳生成光气。 由于活性炭和载持物之间会形成络合物,这种络合物催化剂使催化活性大增,例如载持钯盐的活性炭,即使没有铜盐的催化剂存在,烯烃的氧化反应也能催化进行,而且速度快、选择性高。 由于活性炭具有发达的细孔结构、巨大的内表面积和很好的耐热性、耐酸性、耐碱性,可作为催化剂的载体。例如,有机化学中加氢、脱氢环化、异构化等的反应中,活性炭是铂、钯催化剂的优良载体。 机械特性 ⑴粒度:采用一套标准筛筛分法,求出留在和通过每只筛子的活性炭重量,表示粒度分布。 ⑵静观密度或堆密度:饮食孔隙容积和颗粒间空隙容积的单位体积活性炭的重量。 ⑶体积密度和颗粒密度:饮食孔隙容积而不饮食颗粒间空隙容积的单位体积活性炭的重量。 ⑷强度:即活性炭的耐破碎性。 ⑸耐磨性:即耐磨损或抗磨擦的性能。 这些机械性质直接影响活性炭应用,例如:密度影响容器大小;粉炭粗细影响过滤;粒炭粒度分布影响流体阻力和压降;破碎性影响活性炭使用寿命和废炭再生。 化学特性 活性炭的吸附除了物理吸附,还有化学吸附。活性炭的吸附性既取决于孔隙结构,又取决于化学组成。 活性炭不仅含碳,而且含少量的化学结合、功能团开工的氧和氢,例如羰基、羧基、酚类、内酯类、醌类、醚类。这些表面上含有的氧化物和络合物,有些来自原料的衍生物,有些是在活化时、活化后由空气或水蒸气的作用而生成。有时还会生成表面硫化物和氯化物。在活化中原料所含矿物质集中到活性炭里成为灰分,灰分的主要成分是碱金属和碱土金属的盐类,如碳酸盐和磷酸盐等。 这些灰分含量可经水洗或酸洗的处理而降低。主要用途
1、家用活性炭 空气净化:用活性炭摆放在室内有效的吸收空气中含有的甲醛\二甲苯等 有害物质(特别是新装修的房子), 家具去异味:活性炭可适用于新买的家具放于橱柜\抽屉\冰箱中.也可放在鞋子里面除臭味. 汽车除味:新车一般都含有很多的有害物质\难闻刺鼻的气味,用活性炭可以有效的去除 2、污水处理场排气吸附 3、饮料水处理 4、电厂水预处理 5、废水回收前处理 6、生物法污水处理 7、有毒废水处理 8、石化无碱脱硫醇 9、溶剂回收(因为活性炭可吸附有机溶剂) 10、化工催化剂载体 11、滤毒罐 12、黄金提取 13、化工品储存排气净化 14、制糖、酒类、味精医药、食品精制、脱色 15、乙烯脱盐水填料 16、汽车尾气净化 17、PTA氧化装置净化气体 18、印刷油墨的除杂 19、气体分离:例如从城市煤气中回收苯;从天然气中回收汽油、丙烷和丁烷;用于处理费托合成中的废气,以回收其中的烃类等。 20、液相吸附:例如在制糖工业中用活性炭吸附法使糖液脱色;在化学工业中用活性炭使有机物质脱色;用活性炭净化电镀浴中的有机杂质,以保证电镀表面的质量及用于废水脱酚等。质检信息
亚甲基蓝吸附量 合格 干燥失重,% ≤15.0 pH值(50g/L,25℃) 4.5~7.5 乙醇溶解物,% ≤0.2 锌(Zn),% ≤0.10 盐酸溶解物,% ≤2.0 重金属(以Pb计),% ≤0.01 铁(Fe),% ≤0.10 灼烧残渣(以硫酸盐计),% ≤3.0 硫化合物(以硫酸盐计),% ≤0.15 氯化物(Cl),% ≤0.10安全防患
泄漏处理 泄漏:隔离泄漏污染区,限制出入。切断火源。建议应急处理人员戴自给式呼吸器,穿防毒服。 灭火处理 燃烧性:易燃。灭火剂:水、泡沫、二氧化碳、砂土。火场周围可用的灭火介质。 紧急处理 吸入:迅速脱离现场至新鲜空气处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 误食:误服者用水漱口。就医。 皮肤接触:立即脱去被污染衣着,用大量流动清水冲洗,至少15分钟。就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟,就医,环球净水。影响因素
①活性炭吸附剂的性质 其表面积越大,吸附能力就越强; 活性炭是非极性分子,易于吸附非极性或极性很低的吸附质;活性炭吸附剂颗粒的大小,细孔的构造和分布情况以及表面化学性质等对吸附也有很大的影响。 ②吸附质的性质 取决于其溶解度、表面自由能、极性、吸附质分子的大小和不饱和度、附质的浓度等 ③废水PH值 活性炭一般在酸性溶液中比在碱性溶液中有较高的吸附率。 PH值会对吸附质在水中存在的状态及溶解度等产生影响,从而影响吸附效果。 ④共存物质 共存多种吸附质时,活性炭对某种吸附质的吸附能力比只含该种吸附质时的吸附能力差 ⑤温度 温度对活性炭的吸附影响较小 ⑥接触时间 应保证活性炭与吸附质有一定的接触时间,使吸附接近平衡,充分利用吸附能力。应用领域
◎石化行业 无碱脱臭(精制脱硫醇)――重催的精制装置 乙烯脱盐水(精制填料)――乙烯装置 催化剂载体(钯、铂、铑等)――苯乙烯、连续重整装置 水净化及污水处理――上水及下水的深度处理 ◎电力行业 电厂水质处理及保护――锅炉装置 ◎化工行业 化工催化剂及载体、气体净化、溶剂回收、及油脂等的脱色、精制 ◎食品行业 饮料、酒类、味精母液及食品的精制、脱色、提纯、除臭 ◎黄金行业 黄金提取――适用炭浆法、堆浸法提金工艺 尾液回收――金矿的废物利用及环境保护 ◎环保行业 用于污水处理、废气及有害气体的治理、气体净化 ◎相关行业 香烟滤嘴、木地板防潮、吸味、汽车汽油蒸发污染控制,各种浸渍剂液的制备等,比如活性炭可以作为活性碳罐的填充物用来生产摩托车碳罐 汽车碳罐等。 活性炭吸附法在水处理中的应用 活性炭吸附广泛应用于在城市污水处理、饮用水及工业废水处理。 ⑴城市污水处理 废水中的一些有机物是难于为微生物或一般氧化法所氧化分解的,如酚、苯、石油及其产品、杀虫剂、洗涤剂、合成染料、胺类化合物以及许多人工合成有机物,经生化处理后很难达到对排放要求较高的水体中排放的标准,也严重影响废水的回用,因此需要深度处理。 由于活性炭对有机物的吸附能力大,在废水深度处理中得到广泛的应用,具有以下优点: ①处理程度高,城市污水用活性炭进行深度处理后,BOD可降低99%,TOC可降到1~3mg/L。 ②应用范围广,对废水中绝大多数有机物都有效,包括微生物难于降解的有机物。 ③适应性强,对水量及有机物负荷的变动有较强的适应性能,可得到稳定的处理效果。 ④粒状炭可进行再生重复使用,被吸附的有机物在再生过程中被烧掉,不产生污泥。 ⑤可回收有用物质,例如用活性炭处理含酚废水,用碱再生吸附饱和的活性炭,可以回收酚钠盐。 ⑥设备紧凑、管理方便。 ⑵饮用水深度处理中的应用 活性炭吸附是建立在常规给水处理基础上,一般设置在砂过滤之后,也可与砂滤料组成双层滤料过滤或以活性炭过滤代替砂过滤。 在利用活性炭吸附进行饮用水深度处理的过程中,发现在活性炭滤料上生长有大量的微生物,使出水水质提高且再生延长,于是发展了一种经济有效的去除水中的微污染物质的生物活性炭工艺,流程为原水―(加入混凝剂)―澄清―过滤(加入臭氧)再利用活性炭吸附,最后是出水。 ⑶工业废水处理中的应用 很多工业废水很难或不能采用生化处理,采用其他方法时,有的不能达到排放标准,或运行费用较高,或操作较麻烦等,例如有毒的有机化合物和某些金属及其化合物等。工程实践表明,活性炭对这些物质有很强的吸附能力。再生产品
活性炭目前在环境保护,工业与民用方面己被大量使用,并且取得了相当的成效,然而活性炭在吸附饱合被更换后,使用单位均将其废弃,掩埋或烧掉,造成资源的浪费和对环境的再污染。 活性炭吸附是一个物理过程,因此还可以采用高温蒸汽将使用过的活性炭内之杂质进行脱附,并使其恢复原有之活性,以达到重复使用的目的,具有明显的经济效益。 再生后的活性炭其用途仍可连续重复使用及再生。 活性炭再生技术的发展 随着活性炭的应用范围日趋广泛,活性炭的回收开始得到了人们的重视。如果用过的活性炭无法回收,除了每吨废水的处理费用将会增加0.83~0.90元外,还会对环境造成二次污染。因此,活性炭的再生具有格外重要的意义。 1传统活性炭再生方法 1.1热再生法 热再生法是目前应用最多,工业上最成熟的活性炭再生方法。处理有机废水后的活性炭在再生过程中,根据加热到不同温度时有机物的变化,一般分为干燥、高温炭化及活化三个阶段。在干燥阶段,主要去除活性炭上的可挥发成分。高温炭化阶段是使活性炭上吸附的一部分有机物沸腾、汽化脱附,一部分有机物发生分解反应,生成小分子烃脱附出来,残余成分留在活性炭孔隙内成为“固定炭”。在这一阶段,温度将达到800~900°C,为避免活性炭的氧化,一般在抽真空或惰性气氛下进行。接下来的活化阶段中,往反应釜内通入CO2、CO、H2或水蒸气等气体,以清理活性炭微孔,使其恢复吸附性能,活化阶段是整个再生工艺的关键。热再生法虽然有再生效率高、应用范围广的特点,但在再生过程中,须外加能源加热,投资及运行费用较高。 1.2生物再生法 生物再生法是利用经驯化过的细菌,解析活性炭上吸附的有机物,并进一步消化分解成H2O和CO2的过程。生物再生法与污水处理中的生物法相类似,也有好氧法与厌氧法之分。由于活性炭本身的孔径很小,有的只有几纳米,微生物不能进入这样的孔隙,通常认为在再生过程中会发生细胞自溶现象,即细胞酶流至胞外,而活性炭对酶有吸附作用,因此在炭表面形成酶促中心,从而促进污染物分解,达到再生的目的。生物法简单易行,投资和运行费用较低,但所需时间较长,受水质和温度的影响很大。 1.3湿式氧化再生法 在高温高压的条件下,用氧气或空气作为氧化剂,将处于液相状态下活性炭上吸附的有机物氧化分解成小分子的一种处理方法,称为湿式氧化再生法。实验获得的活性炭最佳再生条件为:再生温度230°C,再生时间1h,充氧pO20.6MPa,加炭量15g,加水量300mL。再生效率达到(45±5)%,经5次循环再生,其再生效率仅下降3%。活性炭表面微孔的部分氧化是再生效率下降的主要原因。 传统的活性炭再生技术除了各自的弊端外,通常还有三点共同的缺陷:⑴再生过程中活性炭损失往往较大;⑵再生后活性炭吸附能力会有明显下降;⑶再生时产生的尾气会造成空气的二次污染。因此,人们或对传统的再生技术进行改进,或探索全新的再生技术。 2目前新兴的活性炭再生技术 2.1溶剂再生法 溶剂再生法是利用活性炭、溶剂与被吸附质三者之间的相平衡关系,通过改变温度、溶剂的pH值等条件,打破吸附平衡,将吸附质从活性炭上脱附下来。 溶剂再生法比较适用于那些可逆吸附,如对高浓度、低沸点有机废水的吸附。它的针对性较强,往往一种溶剂只能脱附某些污染物,而水处理过程中的污染物种类繁多,变化不定,因此一种特定溶剂的应用范围较窄。 2.2电化学再生法 电化学再生法是一种正在研究的新型活性炭再生技术。该方法将活性炭填充在两个主电极之间,在电解液中,加以直流电场,活性炭在电场作用下极化,一端成阳极,另一端呈阴极,形成微电解槽,在活性炭的阴极部位和阳极部位可分别发生还原反应和氧化反应,吸附在活性炭上的污染物大部分因此而分解,小部分因电泳力作用发生脱附。该方法操作方便且效率高、能耗低,其处理对象所受局限性较小,若处理工艺完善,可以避免二次污染。 实验结果表明,电化学再生活性炭具有较高的再生效率,可达到90%。此外,对工艺参数的研究表明,再生位置是活性炭再生工艺中最重要的影响因素,电解质NaCl浓度是较重要的影响因素,再生电流和再生时间对活性炭的电化学再生也有一定的影响。 2.3超临界流体再生法 据最近的研究资料表明,在CO2的临界点附近,再生效率的变化很大;对未被烘干的活性炭,则需要延长其再生时间。对氨基苯磺酸而言,CO2超临界流体法再生的最佳温度为308K,当温度超过308K时,再生不受影响;当流速大于1.47×10-4m/s时,流速不影响再生;用HCl溶液处理后,会使活性炭再生效果明显改善。对苯而言,再生效率在低压下随温度的下降而降低;在16.0MPa压力时的最佳再生温度为318K;在实验流速下,再生效率会随流速加快而提高。 2.4超声波再生法 由于活性炭热再生需要将全部活性炭、被吸附物质及大量的水份都加热到较高的温度,有时甚至达到汽化温度,因此能量消耗很大,且工艺设备复杂。其实,如在活性炭的吸附表面上施加能量,使被吸附物质得到足以脱离吸附表面,重新回到溶液中去的能量,就可以达到再生活性炭的目的。超声波再生就是针对这一点而提出的。超声再生的最大特点是只在局部施加能量,而不需将大量的水溶液和活性炭加热,因而施加的能量很小。 研究表明经超声波再生后,再生排出液的温度仅增加2~3℃。每处理1L活性炭采用功率为50W的超声发生器120min,相当于每m3活性炭再生时耗电100kWh,每再生一次的活性炭损耗仅为干燥质量的0.6%~0.8%,耗水为活性炭体积的10倍。但其只对物理吸附有效,目前再生效率仅为45%左右,且活性炭孔径大小对再生效率有很大影响。 2.5微波辐照再生法 微波辐照再生法是在热再生法基础上发展起来的活性炭再生技术。其原理是以电为能源,利用微波辐照加热实现再生。试验中的最佳再生效率出现在功率为HI(W),辐照时间约为80s时。比较极差S可知,对再生后活性炭碘值恢复影响最大的是微波功率,其次是辐照时间,最后是活性炭的吸附量。微波辐照法再生活性炭的时间短。能耗低、设备构造简单,具有较好的应用前景。然而,在微波加热使有机物脱附过程中,是否有其它的中间产物产生等问题还有待于进一步研究。 2.6催化湿式氧化法 传统湿式氧化法再生效率不高,能耗较大。再生温度是影响再生效率的主要原因,但提高再生温度会增加活性炭的表面氧化,从而降低再生效率。因此,人们考虑借助高效催化剂,采用催化湿式氧化法再生活性炭。同济大学水环境控制与资源化研究国家重点实验室的科研人员正在开展此方面的研究。随着可持续发展观念的深入人心,活性炭再生工艺与技术日益得到人们的重视。一些传统的活性炭再生技术与工艺在近几年有了新的改进与突破。同时新再生技术也在不断涌现。虽然这些新兴技术在工艺路线上还不成熟,目前尚无法投入工业使用。但它们的出现为活性炭的再生带来了新思路与新探讨。国家标准
活性炭国家标准 1 GB/T 7702.10-2008 煤质颗粒活性炭试验方法 苯蒸气 氯乙烷蒸气防护时间的测定 2 GB/T 7702.6-2008 煤质颗粒活性炭试验方法 亚甲蓝吸附值的测定 3 GB/T 7702.7-2008 煤质颗粒活性炭试验方法 碘吸附值的测定 4 GB/T 7702.8-2008 煤质颗粒活性炭试验方法 苯酚吸附值的测定 5 GB/T 7702.9-2008 煤质颗粒活性炭试验方法 着火点的测定 6 GB/T 20449-2006 活性炭丁烷工作容量测试方法 7 GB/T 20450-2006 活性炭着火点测试方法 8 GB/T 20451-2006 活性炭球盘法强度测试方法 9 GB/T 13803.2-1999 木质净水用活性炭 10 GB/T 13803.1-1999 木质味精精制用颗粒活性炭 11 GB/T 13803.3-1999 糖液脱色用活性炭 12 GB/T 12496.4-1999 木质活性炭试验方法 水分含量的测定 13 GB/T 12496.5-1999 木质活性炭试验方法 四氯化碳吸附率(活性)的测定 14 GB/T 12496.16-1999 木质活性炭试验方法 氯化物的测定 15 GB/T 17665-1999 木质颗粒活性炭对四氯化碳蒸气吸附试验方法 16 GB/T 12496.12-1999 木质活性炭试验方法 苯酚吸附值的测定 17 GB/T 13803.4-1999 针剂用活性炭 18 GB/T 12496.9-1999 木质活性炭试验方法 焦糖脱色率的测定 19 GB/T 12496.19-1999 木质活性炭试验方法 铁含量的测定 20 GB/T 12496.10-1999 木质活性炭试验方法 亚甲基蓝吸附值的测定 21 GB/T 12496.13-1999 木质活性炭试验方法 未炭化物的测定 22 GB/T 12496.6-1999 木质活性炭试验方法 强度的测定 23 GB/T 12496.15-1999 木质活性炭试验方法 硫化物的测定 24 GB/T 12496.17-1999 木质活性炭试验方法 硫酸盐的测定 25 GB/T 12496.2-1999 木质活性炭试验方法 粒度分布的测定 26 GB/T 12496.20-1999 木质活性炭试验方法 锌含量的测定 27 GB/T 12496.7-1999 木质活性炭试验方法 PH值的测定 28 GB/T 12496.11-1999 木质活性炭试验方法 硫酸奎宁吸附值的测定 29 GB/T 12496.14-1999 木质活性炭试验方法 氰化物的测定 30 GB/T 12496.8-1999 木质活性炭试验方法 碘吸附值的测定 31 GB/T 12496.18-1999 木质活性炭试验方法 酸溶物的测定 32 GB/T 12496.1-1999 木质活性炭试验方法 表观密度的测定 33 GB/T 12496.21-1999 木质活性炭试验方法 钙镁含量的测定 34 GB/T 13803.5-1999 乙酸乙烯合成触媒载体活性炭 35 GB/T 12496.22-1999 木质活性炭试验方法 重金属的测定 36 GB/T 12496.3-1999 木质活性炭试验方法 灰分含量的测定 37 GB/T 7702.21-1997 煤质颗粒活性炭试验方法--比表面积的测定 38 GB/T 7702.18-1997 煤质颗粒活性炭试验方法--焦糖脱色率的测定 39 GB/T 7701.7-1997 高效吸附用煤质颗粒活性炭 40 GB/T 7702.20-1997 煤质颗粒活性炭试验方法--孔容积的测定 41 GB/T 7702.9-1997 煤质颗粒活性炭试验方法--着火点的测定 42 GB/T 7702.16-1997 煤质颗粒活性炭试验方法--PH值的测定 43 GB/T 7702.15-1997 煤质颗粒活性炭试验方法--灰分的测定 44 GB/T 7702.12-1997 煤质颗粒活性炭试验方法--氯乙烷蒸气防护时间的测定 45 GB/T 7701.3-1997 触媒载体用煤质颗粒活性炭 46 GB/T 7702.19-1997 煤质颗粒活性炭试验方法--四氯化碳脱附率的测定 47 GB/T 7702.11-1997 煤质颗粒活性炭试验方法--苯蒸气防护时间的测定 48 GB/T 7702.2-1997 煤质颗粒活性炭试验方法--粒度的测定 49 GB/T 7702.14-1997 煤质颗粒活性炭试验方法--饱和硫容量的测定 50 GB/T 7702.1-1997 煤质颗粒活性炭试验方法--水分的测定 51 GB/T 7702.10-1997 煤质颗粒活性炭试验方法--防护时间的测定 52 GB/T 7701.5-1997 净化空气用煤质颗粒活性炭 53 GB/T 7701.6-1997 防护用煤质颗粒活性炭 54 GB/T 7702.22-1997 煤质颗粒活性炭试验方法--穿透硫容量的测定 55 GB/T 7702.17-1997 煤质颗粒活性炭试验方法--漂浮率的测定 56 GB/T 7702.8-1997 煤质颗粒活性炭试验方法--苯酚吸附值的测定 57 GB/T 7702.6-1997 煤质颗粒活性炭试验方法--亚甲蓝吸附值的测定 58 GB/T 7701.2-1997 回收溶剂用煤质颗粒活性炭 59 GB/T 7701.1-1997 脱硫用煤质颗粒活性炭 60 GB/T 7702.3-1997 煤质颗粒活性炭试验方法--强度的测定 61 GB/T 7702.7-1997 煤质颗粒活性炭试验方法--碘吸附值的测定 62 GB/T 7701.4-1997 净化水用煤质颗粒活性炭 63 GB/T 7702.5-1997 煤质颗粒活性炭试验方法--水容量的测定 64 GB/T 7702.4-1997 煤质颗粒活性炭试验方法--装填密度的测定 65 GB/T 7702.13-1997 煤质颗粒活性炭试验方法--四氯化碳吸附率的测定 66 GB/T 16143-1995 建筑物表面氡析出率的活性炭测量方法 67 GB/T 13805-1992 糖液脱色用活性炭 68 GB/T 13804-1992 木质净水用活性炭 69 GB/T 13803-1992 木质味精精制用颗粒活性炭 70 GB/T 12496.20-1990 木质活性炭检验方法--PH值 71 GB/T 12496.12-1990 木质活性炭检验方法--酸溶物 72 GB/T 12496.17-1990 木质活性炭检验方法--未炭化物含量 73 GB/T 12496.1-1990 木质活性炭检验方法--焦糖脱色力 74 GB/T 12496.19-1990 木质活性炭检验方法--粒度 75 GB/T 12496.10-1990 木质活性炭检验方法--钙镁含量 76 GB/T 12496.13-1990 木质活性炭检验方法--重金属含量 77 GB/T 12496.5-1990 木质活性炭检验方法--苯酚吸附值 78 GB/T 12496.7-1990 木质活性炭检验方法--碘吸附值 79 GB/T 12496.9-1990 木质活性炭检验方法--氯含量 80 GB 12495-1990 活性炭型号命名法 81 GB/T 12496.3-1990 木质活性炭检验方法--乙酸吸附值 82 GB/T 12496.18-1990 木质活性炭检验方法--充填密度 83 GB/T 12496.16-1990 木质活性炭检验方法--氰化物含量 84 GB/T 12496.15-1990 木质活性炭检验方法--硫化物含量 85 GB/T 12496.22-1990 木质活性炭检验方法--强度测定 86 GB/T 12496.6-1990 木质活性炭检验方法--硫酸奎宁吸附力 87 GB/T 12496.11-1990 木质活性炭检验方法--灼烧残渣 88 GB/T 12496.4-1990 木质活性炭检验方法--乙酸锌吸附值 89 GB/T 12496.14-1990 木质活性炭检验方法--锌盐含量 90 GB/T 12496.8-1990 木质活性炭检验方法--铁含量 91 GB/T 12496.21-1990 木质活性炭检验方法--干燥减量 92 GB/T 12496.2-1990 木质活性炭检验方法--亚甲基蓝脱色力 93 GB 10333-1989 车间空气中活性炭粉尘卫生标准 94 GB 7701.4-1987 净化水用煤质颗粒活性炭 95 GB 7702.5-1987 煤质颗粒活性炭水容量测定方法 96 GB 7701.5-1987 净化空气用煤质颗粒活性炭 97 GB 7702.12-1987 煤质颗粒活性炭对氯乙烷蒸气防护时间测定方法 98 GB 7702.9-1987 煤质颗粒活性炭着火点测定方法 99 GB 7701.2-1987 回收溶剂用煤质颗粒活性炭 100 GB 7701.6-1987 防护用煤质颗粒活性炭 101 GB 7702.14-1987 煤质颗粒活性炭硫容量测定方法 102 GB 7702.11-1987 煤质颗粒活性炭对苯蒸气防护时间测定方法 103 GB 7702.3-1987 煤质颗粒活性炭强度测定方法 104 GB 7702.10-1987 煤质颗粒活性炭有效防护时间测定总方法 105 GB 7702.13-1987 煤质颗粒活性炭对四氯化碳蒸气吸附率测定方法 106 GB 7702.7-1987 煤质颗粒活性炭碘吸附值测定方法 107 GB 7701.1-1987 脱硫用煤质颗粒活性炭 108 GB 7702.6-1987 煤质颗粒活性炭亚甲蓝吸附值测定方法 109 GB 7701.3-1987 触媒载体用煤质颗粒活性炭 110 GB 7702.2-1987 煤质颗粒活性炭粒度测定方法 111 GB 7702.1-1987 煤质颗粒活性炭水分测定方法 112 GB 7702.4-1987 煤质颗粒活性炭装填密度测定方法 113 GB 7702.8-1987 煤质颗粒活性炭苯酚吸附值测定方法 114 YC/T 223.2-2007 特种滤棒第2部分:复合滤棒活性炭一醋纤二元复合滤棒 115 MT/T 1011-2006 煤基活性炭用煤技术条件 116 MT/T 996-2006 活性炭丁烷工作容量的测试方法 117 MT/T 997-2006 活性炭吸附NH3穿透容量和穿透时间的试验方法 118 MT/T 998-2006 活性炭吸附SO2饱和容量的试验方法 119 MT/T 999-2006 活性炭水溶物的试验方法 120 HG/T 3922-2006 活性炭纤维毡 121 LY/T 1615-2004 木质活性炭 术语 122 DL/T 582-2004 火力发电厂水处理用活性炭使用导则 123 LY/T 1616-2004 活性炭水萃取液电导率测定方法 124 LY/T 1617-2004 双电层电容器专用活性炭 125 LY/T 1623-2004 木糖液脱色用活性炭 126 DIN EN 13649-2002 固定源辐射.单个气态有机化合物质量浓度的测定.活性炭 127 LY/T 1581-2000 化学试剂用活性炭 128 LY/T 1582-2000 柠檬酸脱色用活性炭 129 LY/T 1442-1999 醋酸乙烯合成触煤载体活性炭 130 HG/T 3491-1999 化学试剂 活性炭 131 JIS K1474 AMD 1-1999 活性炭的试验方法(修改件1) 132 LY/T 1400-1999 针剂用活性炭 133 LY/T 1331-1999 净水载银活性炭 134 LY/T 1281-1998 味精用粉状活性炭 135 DL/T 582-1995 水处理用活性炭性能试验导则 136 WJ 2284-1995 活性炭、浸渍炭测试用试验筛检定规程 137 WJ 2276-1995 活性炭、浸渍炭粒度测定仪检定规程 138 WJ 2285-1995 活性炭、浸渍炭试验用测定管检定规程 139 WJ 2283-1995 活性炭、浸渍炭强度测定仪检定规程 140 WJ 2249-1994 活性炭标准物质通用规范 141 WJ 2253-1994 浸渍活性炭标准物质通用规范 142 WJ 2250-1994 活性炭比表面积测定仪检定规程 143 WJ 2252-1994 活性炭、浸渍炭防护性能试验装置检定规程 144 EJ/T 824-1994 活性炭吸附氡子体Γ测量仪 145 LY/T 1125-1993 提取黄金用颗粒状活性炭 146 GJB 1468-1992 军用活性炭和浸渍活性炭通用规范 147 CB 1202-1991 含鱼推-3的废水处理规范 活性炭吸附法 148 ZB G13 001-1988 醋酸乙烯合成触媒载体活性炭 149 ZB G13 002-1988 针剂用活性炭 150 HG 3-1290-1980 活性炭 现行活性炭国家标准: 截止2009年12月15日,现行活性炭国家标准一共有54个。粒径目与毫米的换算 | |||||||
目 | 毫米 | 目 | 毫米 | 目 | 毫米 | 目 | 毫米 |
2.5 | 8.00 | 12 | 1.40 | 60 | 0.250 | 270 | 0.053 |
3 | 6.80 | 14 | 1.18 | 65 | 0.212 | 325 | 0.045 |
4 | 4.75 | 16 | 1.00 | 80 | 0.180 | 400 | 0.038 |
5 | 4.00 | 20 | 0.85 | 100 | 0.150 | 500 | 0.031 |
6 | 3.35 | 24 | 0.71 | 115 | 0.125 | 600 | 0.025 |
7 | 2.80 | 28 | 0.60 | 150 | 0.106 | 800 | 0.019 |
8 | 2.36 | 32 | 0.50 | 170 | 0.090 | 1000 | 0.015 |
9 | 2.00 | 35 | 0.425 | 200 | 0.075 | 1500 | 0.010 |
10 | 1.70 | 48 | 0.300 | 250 | 0.063 | 3000 | 0.005 |