概述
维生素K是具有叶绿醌生物活性的一类物质。有K1、K2、K3、K4等几种形式,其中K1、K2是天然存在的,是脂溶性维生素,即从绿色植物中提取的维生素K1和肠道细菌(如大肠杆菌)合成的维生素K2。而K3、K4是通过人工合成的,是水溶性的维生素。最重要的是维生素K1和K2。 维生素K是黄色晶体,熔点为52℃~54℃,通常呈油状液体或固体,不溶于水,能溶于油脂及醚等有机溶剂。 所有维生素K的化学性质都较稳定,能耐酸、耐热,正常烹调中只有很少损失,但对光敏感,也易被碱和紫外线分解。 维生素K最早于1929年,由丹麦化学家达姆从动物肝和麻子油中发现并提取。吸收与代谢
脂溶性维生素K吸收需要胆汁协助,水溶性维生素K的吸收则不需要胆汁。分子式
生理功能
1、促进血液凝固,所以维生素K也称凝血维生素。 维生素是凝血因子γ-羧化酶的辅酶。而其它凝血因子7、9、10的合成也依赖于维生素K 。人体缺少它,凝血时间延长,严重者会流血不止,甚至死亡。对女性来说可减少生理期大量出血,还可防止内出血及痔疮。经常流鼻血的人,可以考虑多从食物中摄取维生素K。 2、维生素K还参与骨骼代谢。 原因是维生素K参与合成BGP(维生素K依赖蛋白质),BGP能调节骨骼中磷酸钙的合成。特别对老年人来说,他们的骨密度和维生素K呈正相关。经常摄入大量含维生素K的绿色蔬菜的妇女能有效降低骨折的危险性。生化研究
维生素K是四种凝血蛋白(凝血酶原、转变加速因子、抗血友病因子和司徒因子)在肝脏内合成必不可少的物质。维生素K均为2-甲基-1,4-萘醌的衍生物。 维生素K1是黄色油状物,K2是淡黄色结晶,均有耐热性,但易受紫外线照射而破坏,故要避光保存。人工合成的K3和K4是水溶性的,可用于口服或注射。临床上使用的抗凝血药双香豆素,其化学结构与维生素K相似,能对抗维生素K的作用,可用以防治血栓的形成。 维生素K和肝脏合成四种凝血因子(凝血酶原、凝血因子Ⅶ,Ⅸ及X)密切相关,如果缺乏维生素K1,则肝脏合成的上述四种凝血因子为异常蛋白质分子,它们催化凝血作用的能力大为下降。人们已知维生素 K是谷氨酸γ羧化反应的辅因子。缺乏维生素K则上述凝血因子的γ-羧化不能进行,此外,血中这几种凝血因子减少,会出现凝血迟缓和出血病症。 此外,人们公认维生素K溶于线粒体膜的类脂中,起着电子转移作用,维生素K可增加肠道蠕动和分泌功能,缺乏维生素K时平滑肌张力及收缩减弱,它还可影响一些激素的代谢。如延缓糖皮质激素在肝中的分解,同时具有类似氢化可的松作用,长期注射维生素K可增加甲状腺的内分泌活性等。在临床上维生素K缺乏常见于胆道梗阻、脂肪痢、长期服用广谱抗菌素以及新生儿中,使用维生素K可予纠正。但过大剂量维生素K也有一定的毒性,如新生儿注射30毫克/天,连用三天有可能引起高胆红素血症。 主要的生化作用如下:1、参与Y-羧基谷氨酸合成
维生素K凝血作用
2、凝血作用
血液凝固是从组织损伤和血小板破坏后引起的一系列的酶促链式反应。血液凝固过程中一些酶原(proenzyme) 的合成与维生素K有关,亦即在他们的合成中需要谷氨酸γ-羧基化。这些酶原除因子Ⅱ、Ⅶ、Ⅸ及X外,最近还发现了蛋白C、S、M,Z。这四种新发现的蛋白,他们的1~40氨基酸排列顺序与凝血酶原同源。蛋白C干扰血液凝固,并促进血纤维蛋白的溶解,在体外活化的蛋白C可以使因子Ⅴ及Ⅷ灭活,蛋白S可以加强蛋白C的活力,他有10个Gla。蛋白M可以促进凝血酶原转变为凝血酶。蛋白Z有13个Gla。对些蛋白了解得还很少,需要进一步的研究。凝血酶原的合成,先在肝细胞粗内质网膜上的形成新生成肽链,然后再进行一些谷氨酸的γ-羧基化和糖基化。在凝血酶原的NH2末端的7,8,15,17,20,21,26,30,332位置的谷氨酸γ-羧基化变成Gla。33位后的谷氨酸不转变为Gla。这种γ-羧基化的特殊选择并不是由氨基酸的排列顺序所致,而是由于蛋白前体在膜上的位置与构形所致。1分子的正常凝血酶原与10―12Ca2+相结合,未γ-羧基化者只能与一个分子Ca2+结合。3、与骨基质中含Gla蛋白的关系
骨基质有几种含Gla的蛋白,主要为BGP(Bone Gla Protein, BGP)与Ca结合者叫做骨钙蛋白,在骨细胞内合成,分泌到血液或组织,然后到骨基质中,占骨中总蛋白垢1~2%,为非胶原蛋白的10~20%。骨钙蛋白出现在骨矿物化之前,骨密度增加,他也增加。他有2个钙结合点,钙离子为0.8mmol/L可以使其半饱和,其他二价正离子如镁、锶、钡也能与之结合,但钙离子结合能力最强,他的作用在调节钙在骨基质中沉积,与羧磷灰石(hydroxy apatite)的核心起作用。也有迹象说明BGP的合成为1, 25(OH)2D3所调节。BGP可能调节1, 25(OH)2D的破骨作用,使其作用缓慢。在一些骨的疾病中,血浆中BGP水平上升,这说明他可能促进骨的重建及钙的动员。怀孕早期如母亲服用维生素K拮抗剂,其胎儿骨骼发生流血现象,这一现象说明,在胎儿生长过程中,需要维生素K的骨骼系统发育比血流凝固系统要早一些,从母体将钙运输至胎儿这一过程对维生素K拮抗剂敏感,可能干扰了胎盘中γ-羧基化蛋白的合成。其他肾小管细胞有含Gla的蛋白质,为其总蛋白的0.2~0.7%,它是与膜结合的蛋白,也与钙离自结合。钙在肾小管细胞内的再吸收与之有关。其他组织如牙质、胎盘、睾丸、胰、脾、肺、乳腺等都含Gla蛋白质,功用不明。有些组织如肌肉、心脏及淋巴细胞中尚未发现。在有些疾病如肾结石(尤其是草酸钙及磷灰石结石)含有Gla的蛋白质、正常主动脉及脂肪条纹及纤维斑块中没有含Gla的蛋白质,而动脉硬化钙化斑块中含有Gla的蛋白质。代谢吸收
杂食物的维生素K有从食物中来的,也有从肠道细菌合成的。维生素K1和维生素K2的吸收与其他脂溶性维生素一样,需要胆汁、胰液,并与乳糜微粒相结合,由淋巴系统运输。吸收量约摄入量的10~70%。人或动物口服生理或药理剂量的维生素K1,20分钟后血浆中已出现维生素K1,2小时达到高峰。在48~72小时内血浆浓度按指数下降至1~5ng/ml。在这段时间,他从乳糜微粒转移至β脂蛋白中,运输至肝内,与VLDL相结合,并通过LDL至各组织。肝为VK的主要靶组织,注射维生素K1小时后,50%剂量在肝内,口服VK2小时后,20%剂量在肝内,24小时降至最低值,而肾、心脏、皮肤及肌肉之量在24小时内增加到最高值而后下降。大鼠肝中维生素K含量约为8~44ng/g,如肝的浓度低于4.5ng/g,凝血酶原时间延长,维生素K总体库比较小,约50~100μg,转换率快,总体库每2.5小时可转换一次。他的代谢物为维生素K短链及氧化代谢物形成γ-内酯,还可与葡糖苷酸结合,在人体维生素K的侧链可以进行β或ω氧化形成6`-羧基酸及其γ-内酯或进一步分解为4`-羧基酸,还有少量的环氧代谢物,这些代谢物与葡糖苷酸相结合,存在于肠肝循环中,或从尿中排出。 维生素K3在动物肝微粒体内转变为MK4,但产量很少,仅为摄取量的0.05~1.0%。维生素K3主要代谢产物为双氢维生素K3葡糖苷酸的硫酸酯。摄入来源
人类维生素K的来源有二方面: 一方面从肠道细菌合成,主要是K2,占50~60%。维生素K在回肠内吸收,细菌必须在回肠内合成,才能为人体所利用,有些抗生素抑制上述消化道的细菌生长,影响维生素K的摄入。 另一方面从食物中来,主要是K1,占40~50%,绿叶蔬菜含量高,其次是奶及肉类,水果及谷类含量低。牛肝、鱼肝油、蛋黄、乳酪、优酪乳、优格、海藻、紫花苜蓿、菠菜、甘蓝菜、莴苣、花椰菜,豌豆、香菜、大豆油、螺旋藻、藕中均含有。每日推荐量
婴儿因假设肠内尚无细菌可合成维生素K,建议自食物中摄取每公斤体重2mcg的量,一般成年人一天约自食物中摄取每公斤体重1mcg~2mcg的量便足够。见下表:组别 | 年龄(岁) | 维生素K(微克) |
婴儿 | 0-1 | 10-20 |
儿童 | 1-11 | 11-60 |
青少年 | >11 | 50--100 |
成人 | ? | 70--140 |
临床意义
健康人对维生素K的需要量低而膳食中含量比较多,原发性维生素K缺乏不常见,临床上能见到的由于维生素K缺乏所致的表现是继发性出血如伤口出血,大片皮下出血和中枢神经系统出血等。胎盘转运维生素K量少,新生儿初生时体内储存量低及体内肠道的无菌状态阻碍了利用维生素K,母乳中维生素K含量低,新生儿吸乳量少以及婴儿未成熟的肝脏还不能合成正常数量的凝血因子等原因,使新生儿、小婴儿普遍存在低凝血酶原症。已知最常见的成人维生素K缺乏性出血多发生于摄入含维生素K低的膳食并服用抗生素的病人中,维生素K不足可见于吸收不良综合征和其它胃肠疾病如囊性纤维化、口炎性腹泻、溃疡性结肠炎、节段性小肠炎、短肠综合征、胆道梗阻、胰腺功能不全等,以上情况均需常规补充维生素K制剂。即使进食大量富含天然维生素K1的膳食也未发现有产生毒性反应者,但服用超过药理剂量的维生素K2能导致新生儿溶血性贫血、高胆红素血症和肝中毒,在成人则可诱发心脏病和肺病。主要功能
1、防止新生婴儿出血疾病;作用